Opportunities for rationalization the electricity consumption of a port complex

Neli Simeonova, Rumen Kirov, Ginko Georgiev and Venelin Ivanov

Technical University – Varna, Burgas, Republic of Bulgaria, venelin.ivanov@navbu-porthburgas.com

GOAL OF THE STUDY

Study of the characteristics of the power supply system of the port complex in order to identify measures to improve the operating modes. The obtained results will enable the introduction of technological solutions for rationalization the electricity supply and achieving energy savings.

METHODOLOGY OF THE INVESTIGATION

For the analysis of the energy characteristics the following methodology is synthesized and the formulas used in the analysis for determination of characteristic coefficients are presented below:

Coefficient of use on active and reactive load:

\[K_{ua} = \frac{P_{av}}{P_n} = \frac{1}{n} \sum_{i=1}^{n} P_i \quad \text{and} \quad K_{ur} = \frac{Q_{av}}{Q_n} = \frac{1}{n} \sum_{i=1}^{n} Q_i \]

Coefficient of the active and reactive load form:

\[K_{fa} = \frac{P_{av,sq}}{P_{av}} = \frac{1}{n} \sqrt{\sum_{i=1}^{n} P_i^2} \quad \text{and} \quad K_{fr} = \frac{Q_{av,sq}}{Q_{av}} = \frac{1}{n} \sqrt{\sum_{i=1}^{n} Q_i^2} \]

Coefficient of the maximum on active and reactive load:

\[K_{Ma} = \frac{P_M}{P_{av}} \quad \text{and} \quad K_{Mr} = \frac{Q_M}{Q_{av}} \]

Coefficient of filling the load schedule by active and reactive load:

\[K_{fa} = \frac{1}{K_{Ma}} \quad \text{and} \quad K_{fr} = \frac{1}{K_{Mr}} \]

Determination of power losses \(\Delta P \), in case of an even load schedule:

\[\Delta P_{av} = \frac{P_{av}^2 + Q_{av}^2}{U^2} \cdot R \]

Determination of power losses \(\Delta P \), in case of an uneven load schedule:

\[\Delta P_{un} = \frac{P_{av,sq}^2 + Q_{av,sq}^2}{U^2} \cdot R \]

Dispersion components for active and reactive power (D[P] and D[Q]) of the considered system are:

\[D[P] = P_{av,sq}^2 - P_{av}^2 \quad \text{and} \quad D[Q] = Q_{av,sq}^2 - Q_{av}^2 \]

The relative difference \(\delta(\Delta P) \) in case of uneven load schedule is estimated using the expression:

\[\delta(\Delta P) = \frac{K_{fa}^2 \cdot P_{av}^2 (K_{fr}^2 - 1) + K_{fr}^2 \cdot Q_{av}^2 (K_{fa}^2 - 1)}{K_{fa}^2 \cdot P_{av}^2 + K_{fr}^2 \cdot Q_{av}^2} \times 100% \]

The electrical energy losses \(\Delta W \) in a segment of the electrical network with active resistance \(R \) for time \(T \) can be determined using average square current \(I_{av,sq} \):

\[\Delta W = 3 \cdot R \cdot I_{av,sq}^2 \cdot T \quad \text{and} \quad W = 3 \cdot R \cdot I_{av}^2 \cdot T + 3 \cdot R \cdot D[I] \cdot T = \Delta W_1 + \Delta W_1 \]

MAIN RESULTS FROM THE STUDY

Based on the measurements made over a long period of time with the help of network analyzers, the different types of power \(P_{AV}, Q_{AV}, P_{AVSQ}, Q_{AVSQ}, P_M, Q_M \) were determined. The characteristic coefficients \(K_{ua}, K_{ur}, K_{fa}, K_{fr}, K_{Ma} \) and \(K_{Mr} \) were calculated. Table 3 presents the values of these characteristics, as well as the additional active power losses \(\delta(\Delta P) \), due to the unevenness of the load schedules, for the studied power substations.
The coefficients of the maximum on active and reactive load, take values respectively $K_{ma} = (1.26 \div 69.01)$ and $K_{mr} = (1.14 \div 69.01)$ and it can also be said that their variation is inadmissible and inexpedient. Such a regime of change of these coefficients means that at certain moments the maximum-continuous load can cause significant prolonged overloads of the power transformer;

The coefficients of the form of active and reactive load for the studied transformer stations vary in the range $K_{fa} = (1.03 \div 4.36)$ and $K_{fr} = (1.02 \div 7.99)$. For some transformer stations, these coefficients assume drastically high values. The reason for this is usually the dynamic impact loads caused by the crane systems. In general, these coefficients have inflated values, which is a reason to plan technical measures to minimize them;

The coefficients of use by active and reactive load for the different transformer stations have very low values, respectively $K_{ma} = (0.01 \div 0.33)$ and $K_{mr} = (0.01 \div 0.24)$. This means that the usability of electricity consumers is relatively low and it is necessary to propose measures to reduce their capacity;

The additional active losses from uneven load δ (ΔP) change in the range $(0.55 \div 2812)$ %, as the largest value δ (ΔP_{max}) = 2812.48 % is registered for TP9, input 2. These losses are too high and it is necessary to implement measures to regulate the load schedules of the various power transformers.

For industrial sites of this type, especially in the mode of reduced load, it is expedient and effective to use methods related to shifting the start of work of different nodes, groups of users or individual users in them. This approach has two main effects: minimizing the maximum-continuous loads P_m and minimizing the additional active power losses $\delta (\Delta P)$.

CONCLUSIONS

In the power stations of the power supply system of the site, the load of the electrical equipment is quite dynamic, but with a low utilization factor and an increased probability of overloading the power transformer due to high values of the maximum - continuous load P_m. These negative phenomena adversely affect the work of consumers, communication and protection elements and the reactive power compensation system.

Analysis of the results for δ (ΔP) shows that these losses for some TA have quite high values. Their minimization can be done by shifting the time for switching on users so as to obtain an equalization of the load schedule.

ACKNOWLEDGMENT

This work was supported by European Regional Development Fund through the Operational Program “Science and Education for Smart Growth” under contract UNITE № BG05M2OP001-1.001-004 (2018-2023).