

2022 8th International Conference on Energy Efficiency and Agricultural Engineering **EE&AE 2022**

30th June - 2nd July 2022, Ruse, Bulgaria

Evaluation of the chemical composition and antimicrobial

activity of summer savory (Satureja hortensis L.) essential

Oİ Stanko Stankov, Hafize Fidan, Ivaila Dincheva, Anton Lazarov, Vanya Gandova, Albena Stoyanova

ABSTRACT

University of Food Technologies, Plovdiv, 4002, Bulgaria antondlazarov@gmail.com

The chemical composition of savory (Satureja hortensis L.) essential oil was determined by GC/MS analysis. The main components of savory essential oil were represented by carvacrol (63.71%), γ -terpinene (20.47%), and p-cymene (5.08%). The main groups of compounds were represented mainly by aromatic oxygen derivatives (65.16%), and on the other hand, the participation of sesquiterpene oxygen derivatives (0.31%) was the lowest. The most significant antibacterial activity was determined against Gram-negative bacteria Proteus vulgaris (35.0 mm) and Escherichia coli (20.0 mm), and the Gram-positive Bacillus subtilis with zone of inhibition - 29.0 mm.

RESULTS AND DISCUSIONS

Summer savory essential oil is a light yellow, easily mobile liquid with a characteristic odor and taste, and its physical characteristics are presented in Table I.

Index	
Appearance	easily mobile, transpar
Colour	light yellow
Smell	characteristic
Taste	characteristic
Relative density (d)	0.910 ± 0.0
Refractive index (n)	1.5049 ± 0.01
D	

Table 1. Characteristics of the summer savory essential oil

The main components of savory essential oil were represented by **carvacrol** (63.71%), *y*-terpinene (20.47%), and *p*-cymene (5.08%).

Fig 1. Distribution of components by groups of compounds,%

The data showed that the zones of inhibition were the largest against Gram-negative bacteria Proteus vulgaris and Escherichia coli, and Gram-positive Bacillus subtilis.

Bacterial strains	Diameter of
E. coli ATCC 8739	20.0 ± 0.19
P. vulgaris ATCC 6380	35.0 ± 0.34
B. subtilis ATCC 6633	29.0 ± 0.28

Table 2. Antimicrobial activity of savory essential oil

Conclusions

- terpinene (20.47%), and *p*-cymene (5.08%), which defined the oil as carvacrol chemotype.
- The essential oil had the most pronounced antibacterial activity against the Gram-negative \bullet

26,69 5,12 1,75 _0,97 monoterpene hydrocarbons sesquiterpene hydrocarbons sesquiterpene oxygen derivatives

The main components represented in the savory essential oil were carvacrol (63.71%), γ bacteria Proteus vulgaris and Escherichia coli, and the Gram-positive bacteria Bacillus subtilis.