

# 2025 10th International Conference on Energy Efficiency and Agricultural Engineering 5-7 November 2025, Starozagorski Bani, Bulgaria



# Toxicological Profile of Porphyrin Derivative From Petroleum

### Yana Koleva

<sup>1</sup>Department of chemistry, Burgas State University "Prof. Dr. Assen Zlatarov", Burgas 8010, Bulgaria), e-mail:ykoleva@btu.bg

## **GOAL OF THE STUDY**

Porphyrins and chlorins are both tetrapyrrole macrocycles, but chlorins are partially hydrogenated porphyrins, meaning they have one pyrroline ring instead of four pyrrole rings. Porphyrins are the foundational structure, while chlorins are derived from them through hydrogenation. Chlorophylls and their derivatives are the most common pigments used for light absorption, energy transfer, and charge separation in photo synthetic organisms. Their functions change upon different aggregation states and specific pigment–protein interactions. Differences in the aromatic  $\pi$ -system and substituents finely tune Chlorophylls electronic, spectroscopic, and supramolecular characteristics. The goal of the present work is to predict the toxicological properties of porphyrin derivative (chlorin) by the CompTox Chemistry Dashboard.

### MATERIALS AND METHODS

Structure of chlorin (Figure 1).

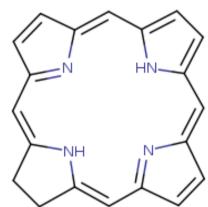
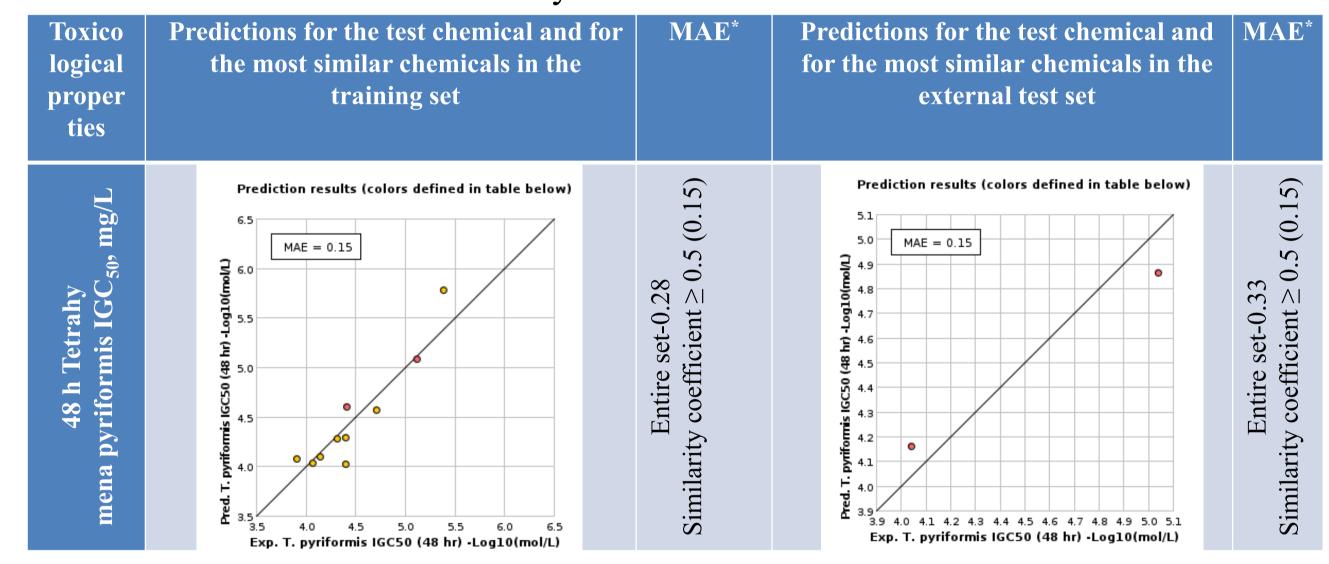



Fig. 1. Structure of chlorin

# **CompTox Chemistry Dashboard**

The Dashboard is a freely accessible web-based application and data hub providing access to data associated with chemical substances. It accesses data from nine component databases housing generic data types. The Dashboard also integrates data from other platforms (specifically PubChem and PubMed) via web services and visualization widgets. The Dashboard represents a first step in building a comprehensive chemical substance-centric informatics architecture to provide flexible access to data, models and analysis tools in support of EPA's research programs [1].


## **RESULTS AND DISCUSSION**

Data of prediction (toxicological endpoints) of chlorin by the CompTox Chemistry Dashboard are presented in Table 1.

Table 1. Predicted results of toxicological endpoints for chlorin

| Properties                                           | Consensus | Hierarchical clustering | Single<br>model | Group contribution | Nearest<br>neighbor |
|------------------------------------------------------|-----------|-------------------------|-----------------|--------------------|---------------------|
| 96 h Fathead<br>minnow LC <sub>50</sub> ,<br>mg/L    | 0.262     | 0.180                   | 0.180           | <del>-</del>       | 0.558               |
| 48 h Daphnia<br>magna LC <sub>50</sub> ,<br>mg/L     | 0.909     | 0.303                   | 0.410           | -                  | 6.059               |
| 48 h Tetrahymena pyriformis IGC <sub>50</sub> , mg/L | 3.792     | _                       | _               | 1.315              | 10.941              |

**Table 2.** Predicted toxicological property (48 h *Tetrahymena pyriformis*, IGC<sub>50</sub>) of chlorin by Consensus method.



## **CONCLUSIONS**

Porphyrins are macrocyclic compounds that can be modified in a seemingly infinite number of ways. These derivatizations often have remarkable and unique properties that can be used in a variety of applications. Overall, porphyrins are an interesting, diverse, and versatile class of molecules that is constantly expanding. Due to the wide application of porphyrins, it is necessary to study the possible toxicological potential for human health and the environment. Experimental data are limited, forcing decisions about the potential of a compound now and in the future to be made on the basis of limited data and information. Therefore, alternative *in silico* methods, such as the CompTox Chemistry Dashboard, are used to assess their behavior (potential toxicity).

### **ACKNOWLEDGMENT**

This study was financially supported by the Burgas State University through the Scientific Research Sector - Project number 511/2025.

### REFERENCES

1. A.J. Williams, C.M. Grulke, J. Edwards, A.D. McEachran, K. Mansouri, N.C. Baker, G. Patlewicz, I. Shah, J.F. Wambaugh, R.S. Judson and A.M. Richard. The CompTox Chemistry Dashboard: A community data resource for environmental chemistry. J. Cheminform. 9, 61 (2017).